Appendix 16.3 Bioacoustics Effects and Interim Sound Exposure Guidelines for Fish

.

Species	Techniques Used	Reference / Title	Findings	
Rainbow trout (<i>Oncorhynchus</i> <i>mykiss</i>)	Physiological: hearing threshold shift using three physiological markers to determine noise impact	Wysocki et al. 2007 Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout <i>Oncorhynchus mykiss</i>	When exposed to three increments of decibel levels (115, 130 and 150 dB re 1 μ Pa) rainbow trout hearing sensitivity, growth, survival, stress, and disease susceptibility were not negatively impacted by the increased noise levels.	
Rainbow trout	Physiological: hearing	Davidson et al. 2009	Rainbow trout habituated to	
(Unionnyheitus mykiss)	three physiological markers to determine noise impact	The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, <i>Oncorhynchus mykiss</i>	db RMS with no negative impact on growth and survival over the long term	
European eel (<i>Anguilla anguilla</i>)	Physiological: metabolic rate using increase in oxygen usage	Simpson et al. 2014 Anthropogenic noise compromises antipredator behaviour in European eels	Significant increase in oxygen usage in eels exposed to motorboat noise compared to fish in control conditions. 25- 50% slower startle response to an 'ambush predator' leading to >2x greater predation rate.	
Gudgeon (<i>Gobio</i> gobio), European perch (<i>Perca</i> fluviatilis)	Physiological: increase in cortisol	Wysocki et al. 2006. Ship Noise and Cortisol Secretion in European Freshwater Fishes	Each exhibited increase in cortisol when exposed to ship noise but no increase in cortisol when exposed to Gaussian noise, indicating stress when exposed to anthropogenic noise	
Eurasian perch (<i>Perca fluviatilis</i>), Roach (<i>Rutilus</i> <i>rutilus</i>)	Physiological: increase in cortisol	Johansson et al. 2016 Stress Response and Habituation to Motorboat Noise in Two Coastal Fish Species in the Bothnian Sea	Short-term noise exposure to both species exhibited an increase in cortisol, whereas the long-term exposure (11 days) fish no longer had elevated cortisol levels, suggesting noise habituation	
Three-Spined Stickleback (<i>Gasterosteus</i> <i>aculeatus</i>)	Behavioural: attention shift, decreasing foraging efficiency	Purser & Radford 2011	Addition of brief white noise	
		Acoustic noise induces attention shifts and reduces foraging performance in three spine sticklebacks (Gasterosteus aculeatus)	increased performance errors and ultimately decreased foraging efficiency in 3-spined sticklebacks	

Table A16-3a: Documented effects of noise on relevant Freshwater Fish (from Mickle & Higgs 2018)

The following tables are reproduced from Popper et al. (2014). They set out definitions of potential hydroacoustic effects on fishes (**Table A16-3b**) and the criteria for relative risk of an effect taking place in relation to continuous sound (**Table A16-3c**). Note that these criteria are still provisional and that substantially more data are required before firm criteria could be set (Popper & Hawkins 2019).

Effect	Definition
Mortality and Mortal Injury	Immediate or delayed death.
Recoverable Injury	Injuries, including hair cell damage, minor internal or external hematoma, etc. None of these injuries are likely to result in mortality.
Temporary Threshold Shift - TTS (hearing loss)	Short- or long-term changes in hearing sensitivity that may or may not reduce fitness. TTS, for these Guidelines, is defined as any change in hearing of 6 dB or greater that persists. Levels less than 6 dB are generally difficult to differentiate and anything less than 6 dB will not be a significant effect from the standpoint of hearing.
Masking	Impairment of hearing sensitivity by greater than 6 dB, including all components of the auditory scene, in the presence of noise.
Behavioural Effects	Substantial change in behaviour for the animals exposed to a sound. This may include long-term changes in behaviour and distribution, such as moving from preferred sites for feeding and reproduction, or alteration of migration patterns. This behavioural criterion does not include effects on single animals, or where animals become habituated to the stimulus, or small changes in behaviour such as a startle response or small movements.
The relative risk of an effect taki	ng place is indicated as being 'high', 'moderate' and 'low'.

Table A16-3b: Definition of Effects Used in Guidelines Tables (Popper et al. 2014)

Table A16-3c: Continuous sounds - Guidelines for fish (Popper et al. 2014)

Type of Animal	Mortality & Potential Mortal Injury	Impairment - Recoverable Injury	Impairment - Temporary Hearing Loss (TTS)	Impairment - Masking	Behaviour
Fish: no swim bladder (particle motion detection)	(N) Low	(N) Low	(N) Moderate	(N) High	(N) Moderate
	(I) Low	(I) Low	(I) Low	(I) High	(I) Moderate
	(F) Low	(F) Low	(F) Low	(F) Moderate	(F) Low
Fish: swim bladder is not involved in hearing (particle motion detection)	(N) Low	(N) Low	(N) Moderate	(N) High	(N) Moderate
	(I) Low	(I) Low	(I) Low	(I) High	(I) Moderate
	(F) Low	(F) Low	(F) Low	(F) Moderate	(F) Low
Fish: swim bladder involved in hearing (pressure detection)	(N) Low	170 dB _{rms}	158 dB _{rms}	(N) High	(N) High
	(I) Low	for 48 h	for 12 h	(I) High	(I) Moderate
	(F) Low			(F) High	(F) Low
Eggs and Larvae	(N) Low	(N) Low	(N) Low	(N) High	(N) Moderate
	(I) Low	(I) Low	(I) Low	(I) Moderate	(I) Moderate
	(F) Low	(F) Low	(F) Low	(F) Low	(F) Low

Notes: Root mean square (rms) sound pressure levels dB re 1 μ Pa. All criteria are presented as sound pressure even for fish without swim bladders since no data for particle motion exist. Relative risk (high, moderate, low) is given for animals at three distances from the source defined in relative terms as near (N – 10's of metres), intermediate (I – 100's of metres), and far (F – 1000's of metres).

* For the most part, data in this table are based on knowing that fish will respond to sounds and their hearing sensitivity, but there are no data on exposure or received levels that enable guideline numbers to be provided.

References

Mickle, M.F. & Higgs, D.M. (2018) Integrating techniques: a review of the effects of anthropogenic noise on freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences. 75(9): 1534-1541. https://doi.org/10.1139/cjfas-2017-0245

Popper, A.N. et al. (2014) Sound Exposure Guidelines. In: ASA S3/SC1.4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. SpringerBriefs in Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-06659-2_7

Popper, A.N. & Hawkins, A.D. (2019) An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. Journal of Fish Biology, 94, 692–713. https://doi.org/10.1111/jfb.13948